
ABSTRACT: Robust, routine, and rapid instrumental methods
for the determination of the authenticity of edible oils, and the
detection of adulteration, are continually being sought. In this
paper, we compare mid-infrared and Raman spectroscopies for
their ability to discriminate between oils of differing botanical
origin and for their ability to detect added adulterants. Further-
more, we used sufficient numbers of samples to permit a com-
parison of some of the chemometric methods (linear discrimi-
nant analysis, artificial neural networks) available and looked at
the results obtained when the two spectroscopic datasets were
combined. We show that mid-infrared spectroscopy, in combi-
nation with linear discriminant analysis, gave the best classifi-
cation rates and adulteration detection levels compared to
Raman or combined data.
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Olive oils are classified according to purity; they can vary
from extra-virgin to lampante, which is not fit for consump-
tion. According to the International Olive Oil Council
(IOOC), “virgin olive oil is the oil obtained from the fruit of
the olive tree solely by mechanical or other physical means
under conditions, particularly thermal conditions, that do not
lead to alteration in the oil, and which has not undergone any
treatment other than washing, decantation, centrifugation and
filtration” (1). The adulteration of olive oils with cheaper oil
not only is a commercial problem but also has health implica-
tions (2). Several methods have been applied to the adulter-
ation problem, and previous workers have shown that spec-
troscopic techniques, such as infrared and Raman, have po-
tential for such analysis. However, a problem for the potential
user is which method to choose for further development and
use. Quite often the choice is not clear due to different exper-
imental designs used by different workers, limited sample
numbers, and sample authenticity. Infrared and Raman spec-
troscopies are techniques that can easily be adapted for use
by untrained personnel in laboratories or on the factory floor.
A particular attraction is the ease of sample presentation. Al-
though both Raman and infrared are forms of vibrational

spectroscopy, the underlying physical processes that give rise
to the two phenomena are different. As a result, bands that are
strong in infrared may be weak or absent in the correspond-
ing Raman spectrum and vice versa. For any given analysis,
one may be preferred over the other.

Lai and co-workers showed that Fourier transform mid-in-
frared spectroscopy is able to discriminate between different
vegetable oils and types of olive oil, even though extra-virgin
olive oil and refined olive oil are similar chemically and spec-
trally (3). They have also shown that it is possible to deter-
mine, quantitatively, the level of typical adulterants in extra-
virgin olive (4). The data could also be interpreted in molecu-
lar terms, so that the chemical basis of discrimination was
understood. Fourier transform infrared (FTIR) spectroscopy
and multidimensional analysis techniques were also used by
Safar and colleagues for the characterization of edible oils,
butters, and margarines, in which the lipid-rich foods were
classified according to their degree of unsaturation (5). Prin-
cipal component (PC) analysis of FTIR spectra was per-
formed by Dupuy and colleagues to classify edible fats and
oils with regard to their origins (6). They used two sampling
methods: attenuated total reflectance (ATR) for fats and the
mid-infrared optical fiber method for oils. From the interpre-
tation of the first PC, they concluded that the basis for the dis-
crimination between fats is the concentration of unsaturated
fatty acids, and different concentrations of linoleic acid for
oils (sunflower, olive, and peanut oils).

The near-infrared (NIR) region of the spectrum has also
been explored for the discrimination and authentication of fats
and oils. Sato used PC analysis on NIR spectroscopic data for
classification of vegetable oils: soybean, corn, cottonseed,
olive, rice bran, peanut, rapeseed, sesame, and coconut oils (7).
Bewig and colleagues achieved differentiation between four
vegetable oil types (cottonseed, peanut, soybean, and canola)
and classification of unknown samples in which the second-de-
rivative spectra of the oils were subject to discriminant analy-
sis with Mahalanobis distances principles (8). Wesley and co-
workers developed a method for predicting the level of adul-
teration in a set of virgin and extra-virgin olive oils adulterated
with corn oil, sunflower oil, and raw olive residue by PC analy-
sis (9). They also used NIR spectroscopy and discriminant
analysis to identify and quantitate adulterants in extra-virgin
olive oils (10).
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Fourier-transform Raman spectroscopy was used by Baeten
and co-workers to predict the level of adulteration in a set of
virgin olive oil samples that were adulterated with soybean,
corn, and raw olive oil residue oils (11). They used 24 samples:
6 genuine extra-virgin olive oils, and 6 samples adulterated
with soybean, corn, or olive pomace oils at 1, 5, or 10% (w/w).

In this paper, we compare the performance of two of the
spectroscopic techniques—Raman and mid-infrared—and
test the value of combining the databases for the authentica-
tion of edible oils.

MATERIAL AND METHODS

Instrumental methods. Mid-infrared spectra of the samples
were acquired on a Spectra-Tech Applied Systems Inc. (Stan-
ford, CT) MonitIR FTIR spectrometer by the ATR sampling
technique. The instrument was equipped with a horizontal 45°
ZnSe trapezoidal ATR cell, a deuterated triglycine sulfate
(DTGS) detector, and a germanium on potassium bromide sub-
strate beamsplitter. The spectra were collected at 4 cm−1 reso-
lution with co-addition of 256 interferograms. A triangular ap-
podization function was used prior to Fourier transformation to
a single-beam spectrum, which was ratioed against an air back-
ground spectrum and converted into absorbance units (12).
After the acquisition of each spectrum, the oil was wiped off of
the crystal with tissue paper, the crystal was cleaned with
hexane, acetone, and finally distilled water. To avoid any spec-
tral variation due to instrumental drift, and to reduce the varia-
tion from day to day to a minimum, an air background spec-
trum was collected before each sample spectrum.

Raman spectroscopy was carried out on a Bio-Rad FT-
Raman spectrometer with a diode-pumped Topaz laser (Spec-
tra-Physics, St. Albans, United Kingdom) operating at 1064
nm as the excitation source and a nitrogen-cooled germanium
detector. Spectral acquisition conditions were: 4 cm−1 resolu-
tion, 256 interferograms collected before Fourier transforma-
tion, and 900 mW laser power at the sample. To compensate
for the detector response profile, a spectrum of ground potas-
sium bromide (KBr), illuminated by a white light source, was
collected with compatible acquisition parameters, and all
sample spectra were ratioed to this spectrum. 

Materials. Our large sample collection was derived from a
number of sources. Firstly, we obtained samples from local
retailers. Although this source is far from ideal, it was the
source used by all previous spectroscopic workers described
above. However, we were able to obtain information from
certain retailers about the audit trailing of selected samples,
leading to increased confidence in their origin. We also ob-
tained samples from colleagues who worked on parallel stud-
ies funded by the Ministry of Agriculture, Fisheries and Food
(MAFF), which had been tested by other analytical proce-
dures. Finally, we were able to obtain samples obtained at
source via colleagues in a European Concerted Action (“Food
Authenticity: Issues and Methodologies”).

The samples of edible oils for the database were: extra-vir-
gin olive, refined olive, sunflower, rapeseed, soybean, sesame,

hazelnut, sweet almond, grapeseed, safflower, peanut, walnut,
mustard, corn, palm, coconut, and palm kernel. The last three
samples were solids at room temperature.

About 2 mL of each of the liquid oil samples was transferred
to screw-capped fluorescence-free glass vials for the acquisi-
tion of Raman spectra. A vial was placed in the sample com-
partment, and the laser spot was directly focused onto it. For
infrared spectral acquisition, the sample was loaded directly
onto the ATR crystal. A different procedure was followed to
obtain the spectra of oils that are solid at room temperature.
The sample was melted at 35°C in a water bath, and the molten
material was transferred to a vial for the Raman experiment or
spread onto the ATR crystal for the infrared analysis and al-
lowed to set into the solid state before acquiring the spectra.
One hundred forty spectra were chosen to form a database,
called ‘pure oils,’ in which seven different groups were pre-
sent: 36 extra-virgin olive oils, 10 refined olive oils, 28 sun-
flower oils, 18 rapeseed oils, 9 peanut oils, 21 soybean oils, and
18 corn oils. These were further divided into a training set of
84 spectra, a tuning set of 27 spectra, and a test set of 29 spec-
tra. The database was chosen after preliminary data processing
(principal component analysis). Some oils were identified as
outliers and were removed from the data set.

Samples of extra-virgin olive oils, adulterated with vari-
ous olive oils and seed oils, were prepared by using oils that
were purchased locally. Eleven extra-virgin olive oils were
chosen to be adulterated with five olive oils; five extra-virgin
olive oils were adulterated with five seed oils. The levels of
adulteration were 5, 15, 25, 35, and 45% (w/w). The adulter-
ated samples were prepared as follows: (i) the required
amount of olive or seed oil was weighed into a clean and dry
screw-capped glass vial, (ii) extra-virgin olive oil was added
until the final weight was about 5 g, (iii) the sample was
mixed by vigorously shaking, and (iv) 2 mL of this mixture
was transferred to the vial used for the Raman acquisition.

In this way, 275 samples of extra-virgin olive oil, adulter-
ated with olive oil, and 125 samples of extra-virgin oil, adul-
terated with seed oil, were prepared. The Raman and infrared
spectra of 150 extra-virgin olive oil samples, adulterated with
olive oil, and of all extra-virgin samples, adulterated with
seed oil, were obtained. To evaluate different adulteration de-
tection methods, a database called ‘adulterated’ was created:
it contained all spectra of the adulterated samples and the 36
spectra of extra-virgin olive oils. It was further divided into a
training set with 185 spectra, and tuning and test sets with 63
spectra each.

Chemometric methods. The data processing was carried
out with Matlab (The Math Works Inc., Natick, MA) running
on a personal computer. Macros were written in-house for
carrying out the linear discriminant analysis (13,14). The ar-
tificial neural network analysis was done with NeuralDesk
(Neural Computer Sciences, Southampton, UK, 1994). The
spectra were area- normalized and baseline-corrected before
data processing.

For the ‘pure oils’ database, a PC analysis by correlation
matrix was performed with the training data, and the PC
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scores of the training set were determined. The scores of the
test set in the PC space were then determined. The PC scores
were then used to: (i) perform a linear discriminant analysis
(LDA) for training and test sets by using Mahalanobis dis-
tances; and (ii) carry out an artificial neural network (ANN)
analysis for training and test set by using the tuning set for
cross-validation. 

Two analyses were carried out: one to discriminate be-
tween extra-virgin olive oils and other oils, and one to dis-
criminate between seven oil types.

For the ‘adulterated’ database, a validation procedure,
called “leave-one-out” or “internal cross-validation,” was
used. This consists of omitting one sample at a time from the
data set (of n samples); using the remaining data as a training
set; and using the sample that was removed as a test sample.
This is repeated n times, omitting each sample in turn. Partial
least squares (PLS) regression, based on the algorithm for or-
thogonalized PLS with one dependent variable (15) while
using “internal cross-validation,” was performed. To carry out
the analysis with an ANN, the PC scores of the training, tun-
ing, and test sets were first calculated as described earlier.

A two-group LDA was performed by using either PLS or
a PC analysis as the reduction step. The leave-one-out proce-
dure was used to give the number of successful classifications
of the test samples.

The infrared and Raman databases were combined, and the
chemometrics methods were applied to see if improved dis-
crimination and/or adulteration detection was possible.

RESULTS AND DISCUSSION

Figures 1 and 2 show a selection of infrared and Raman spec-
tra of extra-virgin olive oils, respectively. The percentage
classification for the ‘pure oils’ database test set is shown in
Table 1 based on two groups of samples: extra-virgin olive
oils and all others, including refined olive, sunflower, rape-
seed, peanut, soybean and corn oil. For the infrared data,
100% of the samples were correctly classified by using with
15 PC scores and using ANN with 12 PC scores. For the
Raman data, the best prediction was 93.1% for 10 PC scores
with LDA, which did not improve with the use of more PC.
This result was slightly better than the classification provided
by the ANN. Both infrared and Raman spectroscopic tech-
niques worked, but in general, infrared gave more satisfac-
tory results. This may be due to the fact that the important
bands for classification are not active in Raman. It is also
likely that these findings are due to the lower signal-to-noise
ratio of Raman when compared to that of infrared. Combin-
ing the data sets leads to no improvement in the classification
success rate when using LDA over that obtained with infrared
data alone.

Table 2 shows the results of a discriminant analysis based
on seven oil groups. For the infrared data with LDA, a 100%
correct assignment was obtained with 10 PC scores. When
analyzing the data with ANN, 20 PC values were needed to
obtain 93.1% success. The fact that the ANN did not work as

well as it did for the two-group analysis may be due to the
number of samples. In this particular situation, there were
fewer samples in each group. The results provided by the
Raman data were not as good as those obtained with infrared
when both LDA and ANN were used.

The results of a PLS regression with the ‘adulterated’ data-
base by using “cross-validation” are shown in Table 3. These
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FIG. 1. Infrared spectra of typical extra-virgin olive oils.

FIG. 2. FT-raman spectra of typical extra-virgin olive oils.

TABLE 1
Percentage Classification Success Obtained by Different Chemometric
Methods: Linear Discriminant Analysis (LDA) and Artificial Neural
Networks (ANN)a

Number of
principal Infrared Raman Combined data
components LDA ANN LDA ANN LDA

5 93 97 90 90 87
10 97 97 93 90 93
12 97 100 93 90 97
15 100 100 93 90 100
20 100 100 93 90 100
aResults for test set of two-group analysis.



are compared with the output from the analysis by ANN. For
the infrared data, the best prediction is obtained by using 10
PLS factors and 10 PC scores for ANN, with the PLS results
being slightly better than those provided by ANN. The rea-
son for these results may be the number of samples in each
step of processing: for a PLS regression, all 311 samples in
the database were used as ‘training’ and ‘test’ samples,
whereas for the analysis with the ANN, the database was di-
vided into a training set of 185 spectra, and tuning and test
sets with 63 spectra each. For Raman, the best result was ob-
tained with five PLS factors or five PC scores. However, the
prediction success provided by the Raman data is lower than
that provided by infrared. The combination of infrared and
Raman data did not improve the level of prediction, and eight
PC were necessary to give a prediction level of 87%. 

The adulteration detection limit provided by PLS and
ANN, when applied to the infrared data, was 5% for each of
the adulterants used (the minimum adulterant level). How-
ever, for the Raman data, the detection limit was 45% when
the adulterant was refined olive oil and 5% for the other adul-
terants. These results are given for the number of PLS factors
or PC scores that provided the best prediction results. The full
model plots for each of the results discussed above are shown
in Figures 3 to 6. 

The results of a two-group LDA, performed on the infrared
data by using either PLS or a principal component analysis
(PCA), as the reduction step, revealed that fewer PLS factors
were required to obtain prediction success rates (99% with

nine factors) when compared with the analysis based on PC
scores (99% with 19 PC). As shown by Kemsley (16), the rea-
son for this is believed to be that PLS reductions yield scores
that maximize the between-groups variance. For the Raman
data, the same general result was found; using PLS as a pre-
treatment gave a better prediction than when using PCA.
However, as before, infrared data provided more correct clas-
sified samples. A summary of the results for the infrared and
Raman data is presented in Figures 7 and 8, respectively. 

The combination of infrared and Raman data has been pro-
posed by spectroscopists as an approach in which the compli-
mentary nature of the techniques should lead to improved dis-
crimination. The idea was that different functional groups
give rise to quite significantly different intensities in the in-
frared and Raman spectra, so that a complete vibrational spec-
trum is only really obtained when the two spectra are com-
bined. We also aimed to ensure that there were sufficient sam-
ples for a valid comparison to be drawn, particularly because
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TABLE 2
Percentage Successes of Classification Obtained by Different
Chemometric Methods: LDA and ANNa

Number of
principal Infrared Raman Combined data
components LDA ANN LDA ANN LDA

5 96 66 66 38 80
10 100 69 83 52 97
15 100 90 80 52 100
20 100 93 93 62 100
aResults for test set of seven-group analysis. For abbreviations see Table 1.

TABLE 3
Percentage of Correct Classified Samples Obtained When Using
Partial Least Squares (PLS) Regression and ANN Applied
to the ‘Adulterated’ Databasea

Number of Infrared Raman
PLS factors PLS PLS Combined data
scores regression ANN regression ANN ANN

5 97 27 97 95 86
8 98 84 96 94 87

10 99 89 94 92 78
12 99 68 93 95 60
15 99 75 92 95 59
20 99 60 91 95 75
aPC, principal component. For other abbreviation see Table 1.

FIG. 3. Output of a partial least-squares (PLS) regression of infrared data
(extra-virgin and adulterated oil samples) at 10 PLS factors.

FIG. 4. Output of an artificial neural network (ANN) analysis of infrared
data (extra-virgin and adulterated oil samples) with 10 principal com-
ponent (PC) scores.



a further objective was to compare some of the multivariate
statistical methods currently applied to such data.

The findings presented in this paper show that infrared is bet-
ter than Raman at classifying oil samples and detecting adulter-
ation. Furthermore, we found no additional benefit from com-
bining the two data sets. We are not altogether surprised by this
result. Although fatty acid composition is important in discrimi-
nating between most oils, the detection of refined olive oils
added to extra-virgin olive oils may require the techniques to be
sensitive to low levels of specific compounds. In other mixtures,
the composition may be affected only to a small degree by the
adulterant. The fact that Raman spectroscopy is poorer at de-
tecting additions may result from the fact that Raman spectral
quality, in terms of signal-to-noise ratio, is considerably less
than that for infrared. This was most noticeable when extra-vir-
gin olive oil was adulterated with refined olive oil. 

We also found that linear discriminant analysis based on
partial least-squares data reduction gave better results than

artificial neural networks for classification according to
botanical origin. PLS/LDA was also better at separating adul-
terated samples from pure samples.

We conclude that the infrared method combined with  LDA
based on PLS data reduction is likely to be the best technique
for further investigation and development as a rapid technique.
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